How do you rationalize the denominator and simplify #1 / (sqrt5+sqrt6)#?
1 Answer
Mar 16, 2016
Explanation:
It works out a little easier if you swap
Multiply both numerator and denominator by the conjugate
#1/(sqrt(5)+sqrt(6))#
#=1/(sqrt(6)+sqrt(5))#
#=(sqrt(6)-sqrt(5))/((sqrt(6)-sqrt(5))(sqrt(6)+sqrt(5)))#
#=(sqrt(6)-sqrt(5))/((sqrt(6))^2-(sqrt(5))^2)#
#=(sqrt(6)-sqrt(5))/(6-5)#
#=(sqrt(6)-sqrt(5))/1#
#=sqrt(6)-sqrt(5)#