How do you rationalize the denominator and simplify 1/(sqrt3 - sqrt5 - 2)?

1 Answer
Apr 22, 2016

1/(sqrt(3)-sqrt(5)-2) = -10/47-4/47sqrt(15)+7/47sqrt(3)-1/47sqrt(5)

Explanation:

Multiply numerator and denominator by:

(sqrt(3)+sqrt(5)-2)(sqrt(3)-sqrt(5)+2)(sqrt(3)+sqrt(5)+2)

First note that:

(sqrt(3)-sqrt(5)+2)(sqrt(3)+sqrt(5)+2)

=((sqrt(3)+2)-sqrt(5))((sqrt(3)+2)+sqrt(5))

=(sqrt(3)+2)^2-(sqrt(5))^2

=2+4sqrt(3)+4-5

= 1+4sqrt(3)

Similarly:

(sqrt(3)-sqrt(5)-2)(sqrt(3)+sqrt(5)-2)

=((sqrt(3)-2)-sqrt(5))((sqrt(3)-2)+sqrt(5))

=(sqrt(3)-2)^2-(sqrt(5))^2

=2-4sqrt(3)+4-5

= 1-4sqrt(3)

So the denominator becomes:

(1-4sqrt(3))(1+4sqrt(3))=1^2-(4sqrt(3))^2=1-48=-47

Meanwhile, the numerator becomes:

(sqrt(3)+sqrt(5)-2)(1+4sqrt(3))

=sqrt(3)+sqrt(5)-2 + 4sqrt(3)(sqrt(3)+sqrt(5)-2)

=sqrt(3)+sqrt(5)-2+12+4sqrt(15)-8sqrt(3)

=10+4sqrt(15)-7sqrt(3)+sqrt(5)

So:

1/(sqrt(3)-sqrt(5)-2) = (10+4sqrt(15)-7sqrt(3)+sqrt(5))/(-47)

=-10/47-4/47sqrt(15)+7/47sqrt(3)-1/47sqrt(5)