How do you rationalize the denominator and simplify 1 / (1+sqrt3-sqrt5)?
1 Answer
Explanation:
We will use the difference of squares identity twice:
a^2-b^2=(a-b)(a+b)
Let us first multiply numerator and denominator by:
1+sqrt(3)+sqrt(5)
as follows:
1/(1+sqrt(3)-sqrt(5))
= (1+sqrt(3)+sqrt(5))/((1+sqrt(3)-sqrt(5))(1+sqrt(3)+sqrt(5)))
= (1+sqrt(3)+sqrt(5))/(((1+sqrt(3))-sqrt(5))((1+sqrt(3))+sqrt(5)))
=(1+sqrt(3)+sqrt(5))/((1+sqrt(3))^2-(sqrt(5))^2)
=(1+sqrt(3)+sqrt(5))/((1+2sqrt(3)+3)-5)
=(1+sqrt(3)+sqrt(5))/(2sqrt(3)-1)
Then multiply numerator and denominator by
=((1+sqrt(3)+sqrt(5))(2sqrt(3)+1))/((2sqrt(3)-1)(2sqrt(3)+1))
=((1+sqrt(3)+sqrt(5))(2sqrt(3)+1))/((2sqrt(3))^2-1^2)
=1/11 (1+sqrt(3)+sqrt(5))(2sqrt(3)+1)
=1/11 (2sqrt(3)(1+sqrt(3)+sqrt(5)) + (1+sqrt(3)+sqrt(5)))
=1/11 ((2sqrt(3)+6+2sqrt(15)) + (1+sqrt(3)+sqrt(5)))
=1/11 (7 + 3sqrt(3)+sqrt(5)+2sqrt(15))