How do you rationalize the denominator and simplify 1/{1+sqrt(3)-sqrt(5)}11+35?

2 Answers
Apr 2, 2018

Attempt to make the three term denominator two terms..

Explanation:

Multiply the fraction by (1+ sqrt3 + sqrt5)/(1+sqrt3+sqrt5)1+3+51+3+5 . This is the same as multiplying by 1. This is two eliminate two surds.
The denominator you should get after multiplying the two fractions is
(1+sqrt3+sqrt5) * (1+sqrt3-sqrt5)(1+3+5)(1+35) . We can write this as ((1+sqrt3)-sqrt5)(1+sqrt3)+sqrt5)((1+3)5)(1+3)+5).
This can then be made is DOPS and written as : (1+sqrt3)^2-(sqrt5)^2(1+3)2(5)2.
Simplify that to get: 1+3+2sqrt3-51+3+235
I'll leave it here :).

Apr 2, 2018

1/(1+sqrt(3)-sqrt(5)) =(7+3sqrt(3)+sqrt(5)+2sqrt(15))/1111+35=7+33+5+21511

Explanation:

This involves two stages of rationalisation to get rid of terms in sqrt(3)3 and sqrt(5)5. Both steps use the difference of squares identity:

A^2-B^2=(A-B)(A+B)A2B2=(AB)(A+B)

So:

1/(1+sqrt(3)-sqrt(5)) = (1+sqrt(3)+sqrt(5))/(((1+sqrt(3))-sqrt(5))((1+sqrt(3))+sqrt(5)))11+35=1+3+5((1+3)5)((1+3)+5)

color(white)(1/(1+sqrt(3)-sqrt(5))) = (1+sqrt(3)+sqrt(5))/((1+sqrt(3))^2-(sqrt(5))^2)11+35=1+3+5(1+3)2(5)2

color(white)(1/(1+sqrt(3)-sqrt(5))) = (1+sqrt(3)+sqrt(5))/(1+2sqrt(3)+3-5)11+35=1+3+51+23+35

color(white)(1/(1+sqrt(3)-sqrt(5))) = (1+sqrt(3)+sqrt(5))/(2sqrt(3)-1)11+35=1+3+5231

color(white)(1/(1+sqrt(3)-sqrt(5))) = ((1+sqrt(3)+sqrt(5))(2sqrt(3)+1))/((2sqrt(3)-1)(2sqrt(3)+1))11+35=(1+3+5)(23+1)(231)(23+1)

color(white)(1/(1+sqrt(3)-sqrt(5))) = ((1+sqrt(3)+sqrt(5))(2sqrt(3)+1))/((2sqrt(3))^2-1^2)11+35=(1+3+5)(23+1)(23)212

color(white)(1/(1+sqrt(3)-sqrt(5))) = ((1+sqrt(3)+sqrt(5))(2sqrt(3)+1))/(12-1)11+35=(1+3+5)(23+1)121

color(white)(1/(1+sqrt(3)-sqrt(5))) = 1/11(1+sqrt(3)+sqrt(5))(2sqrt(3)+1)11+35=111(1+3+5)(23+1)

color(white)(1/(1+sqrt(3)-sqrt(5))) = 1/11(2sqrt(3)(1+sqrt(3)+sqrt(5))+1(1+sqrt(3)+sqrt(5)))11+35=111(23(1+3+5)+1(1+3+5))

color(white)(1/(1+sqrt(3)-sqrt(5))) = 1/11(2sqrt(3)+6+2sqrt(15)+1+sqrt(3)+sqrt(5))11+35=111(23+6+215+1+3+5)

color(white)(1/(1+sqrt(3)-sqrt(5))) =(7+3sqrt(3)+sqrt(5)+2sqrt(15))/1111+35=7+33+5+21511