How do you rationalize the denominator and simplify 1/{1+sqrt(3)-sqrt(5)}11+√3−√5?
2 Answers
Attempt to make the three term denominator two terms..
Explanation:
Multiply the fraction by
The denominator you should get after multiplying the two fractions is
This can then be made is DOPS and written as :
Simplify that to get:
I'll leave it here :).
Explanation:
This involves two stages of rationalisation to get rid of terms in
A^2-B^2=(A-B)(A+B)A2−B2=(A−B)(A+B)
So:
1/(1+sqrt(3)-sqrt(5)) = (1+sqrt(3)+sqrt(5))/(((1+sqrt(3))-sqrt(5))((1+sqrt(3))+sqrt(5)))11+√3−√5=1+√3+√5((1+√3)−√5)((1+√3)+√5)
color(white)(1/(1+sqrt(3)-sqrt(5))) = (1+sqrt(3)+sqrt(5))/((1+sqrt(3))^2-(sqrt(5))^2)11+√3−√5=1+√3+√5(1+√3)2−(√5)2
color(white)(1/(1+sqrt(3)-sqrt(5))) = (1+sqrt(3)+sqrt(5))/(1+2sqrt(3)+3-5)11+√3−√5=1+√3+√51+2√3+3−5
color(white)(1/(1+sqrt(3)-sqrt(5))) = (1+sqrt(3)+sqrt(5))/(2sqrt(3)-1)11+√3−√5=1+√3+√52√3−1
color(white)(1/(1+sqrt(3)-sqrt(5))) = ((1+sqrt(3)+sqrt(5))(2sqrt(3)+1))/((2sqrt(3)-1)(2sqrt(3)+1))11+√3−√5=(1+√3+√5)(2√3+1)(2√3−1)(2√3+1)
color(white)(1/(1+sqrt(3)-sqrt(5))) = ((1+sqrt(3)+sqrt(5))(2sqrt(3)+1))/((2sqrt(3))^2-1^2)11+√3−√5=(1+√3+√5)(2√3+1)(2√3)2−12
color(white)(1/(1+sqrt(3)-sqrt(5))) = ((1+sqrt(3)+sqrt(5))(2sqrt(3)+1))/(12-1)11+√3−√5=(1+√3+√5)(2√3+1)12−1
color(white)(1/(1+sqrt(3)-sqrt(5))) = 1/11(1+sqrt(3)+sqrt(5))(2sqrt(3)+1)11+√3−√5=111(1+√3+√5)(2√3+1)
color(white)(1/(1+sqrt(3)-sqrt(5))) = 1/11(2sqrt(3)(1+sqrt(3)+sqrt(5))+1(1+sqrt(3)+sqrt(5)))11+√3−√5=111(2√3(1+√3+√5)+1(1+√3+√5))
color(white)(1/(1+sqrt(3)-sqrt(5))) = 1/11(2sqrt(3)+6+2sqrt(15)+1+sqrt(3)+sqrt(5))11+√3−√5=111(2√3+6+2√15+1+√3+√5)
color(white)(1/(1+sqrt(3)-sqrt(5))) =(7+3sqrt(3)+sqrt(5)+2sqrt(15))/1111+√3−√5=7+3√3+√5+2√1511