How do you rationalize the denominator 7/(sqrt3-sqrt2) 732?

2 Answers
May 26, 2015

You can multiply and divide your expression by sqrt(3)+sqrt(2)3+2 to get:
7/(sqrt(3)-sqrt(2))*(sqrt(3)+sqrt(2))/(sqrt(3)+sqrt(2))=7323+23+2=

in the denominator you have a notable:
(a+b)(a-b)=a^2-b^2(a+b)(ab)=a2b2

So you get:
(7(sqrt(3)+sqrt(2)))/(3-2)=7(sqrt(3)+sqrt(2))7(3+2)32=7(3+2)

May 26, 2015

Multiply numerator and denominator by the conjugate (sqrt(3)+sqrt(2))(3+2):

7/(sqrt(3)-sqrt(2))732

= (7(sqrt(3)+sqrt(2)))/((sqrt(3)-sqrt(2))(sqrt(3)+sqrt(2)))=7(3+2)(32)(3+2)

= (7(sqrt(3)+sqrt(2)))/(sqrt(3)^2-sqrt(2)^2)=7(3+2)3222

= (7(sqrt(3)+sqrt(2)))/(3-2)=7(3+2)32

= 7(sqrt(3)+sqrt(2))=7(3+2)