How do you rationalize (3sqrt3-2sqrt2)/ (3sqrt3+2sqrt2)332233+22?

1 Answer
May 17, 2015

Multiply both the numerator (top) and denominator (bottom) by the conjugate of the denominator:

(3sqrt(3)-2sqrt(2))/(3sqrt(3)+2sqrt(2))332233+22

= ((3sqrt(3)-2sqrt(2))(3sqrt(3)-2sqrt(2)))/((3sqrt(3)+2sqrt(2))(3sqrt(3)-2sqrt(2)))=(3322)(3322)(33+22)(3322)

= ((3sqrt(3))^2-2(3sqrt(3))(2sqrt(2))+(2sqrt(2))^2)/((3sqrt(3))^2-(2sqrt(2))^2)=(33)22(33)(22)+(22)2(33)2(22)2

=(27-12sqrt(6)+8)/(27-8)=27126+8278

=(35-12sqrt(6))/19=3512619

The reason you can eliminate the square roots from the denominator in this way is because (a+b)(a-b)=a^2-b^2(a+b)(ab)=a2b2 for any aa and bb.