The quick answer is: multiply both numerator (top) and denominator by:
#(1+sqrt(3)+sqrt(5))(1-sqrt(3)-sqrt(5))(1-sqrt(3)+sqrt(5))#
Quick to say, but a little slow to do...
Let's take it one step at a time...
#(1+sqrt(3)-sqrt(5))(1+sqrt(3)+sqrt(5))#
#=(1+sqrt(3))^2-sqrt(5)^2#
#=1+2sqrt(3)+3-5#
#=-1+2sqrt(3)#
For slightly complex reasons, we can reverse the sign on all occurences of #sqrt(3)# to deduce:
#(1-sqrt(3)-sqrt(5))(1-sqrt(3)+sqrt(5))=-1-2sqrt(3)#
So
#(1+sqrt(3)-sqrt(5))(1+sqrt(3)+sqrt(5))(1-sqrt(3)-sqrt(5))(1-sqrt(3)+sqrt(5))#
#=(-1+2sqrt(3))(-1-2sqrt(3))#
#=(1-2sqrt(3))(1+2sqrt(3))#
#=1^2-(2sqrt(3))^2#
#=1-12=-11#
So
#1/(1+sqrt(3)-sqrt(5)) = -((1+sqrt(3)+sqrt(5))(1-sqrt(3)-sqrt(5))
(1-sqrt(3)+sqrt(5)))/11#