How do you prove that tan15=23?

1 Answer
May 26, 2018

Below

Explanation:

RTP: tan15=23

tan15=tan(4530)

Recall: tan(ab)=tanatanb1+tanatanb

tan(4530)=tan45tan301+tan45tan30

= 1131+13

= 3133+13

= (313)×(33+1)

= 313+1

Rationalise the denominator
= 313+1×3131

= 323+131

= 4232

Take out the common factor
= 2(23)2

Simplify
= 23