How do you prove that sin2(x2)=sin2x2(1+cosx)?

1 Answer

We know that

cos2x=cos2xsin2x=12sin2x

Hence

sin2x=12(1cos2x)

Set xt2 so we have

sin2(t2)=12(1cost)

Multiply and divide the LHS with 1+cost hence

sin2(t2)=12[(1cost)(1+cost)1+cost]sin2(t2)=12[1cos2t1+cost]sin2(t2)=12[sin2t1+cost]

Which proves the requested