How do you prove that cot^2 x +csc^2 x = 2csc^2 x - sin^2x-cos^2x ?

1 Answer
Dec 20, 2015

csc^2(x) - sin^2(x) - cos^2(x) = 1/sin^2(x) - sin^2(x)-cos^2(x)

= 1/sin^2(x) - (sin^2(x) + cos^2(x))

= 1/sin^2(x) - 1

= 1/sin^2(x) - sin^2(x)/sin^2(x)

= (1-sin^2(x))/sin^2(x)

= cos^2(x)/sin^2(x)

= cot^2(x)

Then, as

cot^2(x)=csc^2(x) - sin^2(x) - cos^2(x)

Adding csc^2(x) to both sides gives us

cot^2(x) + csc^2(x) = 2csc^2(x) - sin^2(x) - cos^2(x)