How do you prove that cosθ−sinθsin2θ=cosθcos2θ?
2 Answers
May 26, 2018
But we know that
Then, we have
QED
May 26, 2018
Explanation:
using the trigonometric identities
∙xsin2θ=2sinθcosθ
∙xcos2θ=1−2sin2θ
consider the left side
cosθ−sinθ(2sinθcosθ)
=cosθ−2sin2θcosθ
=cosθ(1−2sin2θ)
=cosθcos2θ
=right side ⇒verified