How do you prove that cosθsinθsin2θ=cosθcos2θ?

2 Answers
May 26, 2018

cosθsinθsin2θ=cosθsinθ2sinθcosθ=

=cosθ2sin2θcosθ=cosθ(12sin2θ)

But we know that cos2θ=cos2θsin2θ=1sin2θsin2θ=12sin2θ

Then, we have cosθsinθsin2θ=cosθcos2θ

QED

May 26, 2018

see explanation

Explanation:

using the trigonometric identities

xsin2θ=2sinθcosθ

xcos2θ=12sin2θ

consider the left side

cosθsinθ(2sinθcosθ)

=cosθ2sin2θcosθ

=cosθ(12sin2θ)

=cosθcos2θ

=right side verified