How do you prove that cos2θcos23θ=sin4θsin2θ?

1 Answer
May 13, 2018

LHS=cos2θcos23θ
=12(1+cos2θ)12(1+cos6θ)

=12(cos2θcos6θ)

=12(2sin(2θ+6θ2)sin(6θ2θ2))

=sin4θsin2θ=RHS