How do you prove that 2cos(θ+π3)=cosθ3sinθ?

1 Answer
May 26, 2018

Below

Explanation:

2cos(θ+π3)=cosθ3sinθ

LHS
2cos(θ+π3)

Recall: cos(ab)=cosacosbsinasinb

= 2(cosθcos(π3)sinθsin(π3))

= 2(cosθ×12sinθ×32)

= 2×12×cosθ12×32×sinθ

= cosθ3sinθ

= RHS