How do you prove tan(pi/4 + theta) - tan(pi/4 - theta) = 2tan2thetatan(π4+θ)tan(π4θ)=2tan2θ?

2 Answers
Apr 19, 2018

LHS=tan(pi/4 + theta) - tan(pi/4 - theta)LHS=tan(π4+θ)tan(π4θ)

=(tan(pi/4) + tantheta)/(1-tan(pi/4)tantheta) -( tan(pi/4) -tan theta)/(1+tan(pi/4)tantheta)=tan(π4)+tanθ1tan(π4)tanθtan(π4)tanθ1+tan(π4)tanθ

=(1+ tantheta)/(1-tantheta) -( 1-tan theta)/(1+tantheta)=1+tanθ1tanθ1tanθ1+tanθ

=((1+ tantheta)^2 -( 1-tan theta)^2)/(1-tan^2theta)=(1+tanθ)2(1tanθ)21tan2θ

=(4tantheta)/(1-tan^2theta)=4tanθ1tan2θ

= 2tan2theta=2tan2θ

Apr 19, 2018

We know,

color(blue)(tan(A±B)=(tanA±tanB)/(1∓tanAtanB)=> tan(A±B)*{1∓tanAtanB}=tanA±tanB)tan(A±B)=tanA±tanB1tanAtanBtan(A±B){1tanAtanB}=tanA±tanB

So,

(tanunderbrace((π/4+theta))_color(blue)text(A)-tanunderbrace((π/4-theta)_color(blue)text(B)))

= tan(cancel(π/4)+theta-cancel(π/4)+theta)*{1+tan(π/4+theta) tan (π/4-theta)}

Again applying, color(blue)(tan(A±B)=(tanA±tanB)/(1∓tanAtanB)=> tan(A±B)*1∓tanAtanB=tanA±tanB)

=tan(2theta){1+(tan(π/4)+tantheta)/(1-tan(π/4)tantheta)×(tan(π/4)-tantheta)/(1+tan(π/4)tantheta)}

We know,

tan(π/4)=1

So,

=tan(2theta){1+cancel((1+tantheta))/(cancel((1-tantheta)))×(cancel((1-tantheta)))/(cancel((1+tantheta)))}

=2tan2theta

=RHS

hence, proved! :)