We know,
color(blue)(tan(A±B)=(tanA±tanB)/(1∓tanAtanB)=> tan(A±B)*{1∓tanAtanB}=tanA±tanB)tan(A±B)=tanA±tanB1∓tanAtanB⇒tan(A±B)⋅{1∓tanAtanB}=tanA±tanB
So,
(tanunderbrace((π/4+theta))_color(blue)text(A)-tanunderbrace((π/4-theta)_color(blue)text(B)))
= tan(cancel(π/4)+theta-cancel(π/4)+theta)*{1+tan(π/4+theta) tan (π/4-theta)}
Again applying, color(blue)(tan(A±B)=(tanA±tanB)/(1∓tanAtanB)=> tan(A±B)*1∓tanAtanB=tanA±tanB)
=tan(2theta){1+(tan(π/4)+tantheta)/(1-tan(π/4)tantheta)×(tan(π/4)-tantheta)/(1+tan(π/4)tantheta)}
We know,
tan(π/4)=1
So,
=tan(2theta){1+cancel((1+tantheta))/(cancel((1-tantheta)))×(cancel((1-tantheta)))/(cancel((1+tantheta)))}
=2tan2theta
=RHS
hence, proved! :)