How do you prove tan^2x(1-sin^2x)=(-cos2x+1)/2 ?

2 Answers

LHS

=\tan^2x(1-\sin^2x)

=\frac{\sin^2x}{\cos^2x}(\cos^2x)

=\sin^2x

=1-\cos^2x

1-(\frac{1+\cos2x}{2})

=\frac{2-1-\cos2x}{2}

=\frac{-\cos 2x+1}{2}

=RHS

Proved.

Jul 1, 2018

Please see below.

Explanation:

We know that,

color(red)((1)sin^2theta+cos^2theta=1

color(blue)((2)1-cos2theta=2sin^2theta

We take ,

LHS=tan^2x(color(red)(1-sin^2x))tocolor(red)(Apply(1)

color(white)(LHS)=sin^2x/cos^2x(color(red)(cos^2x))to[becausetantheta=sintheta/costheta]

color(white)(LHS)=sin^2x

color(white)(LHS)=1/2[color(blue)(2sin^2x)]tocolor(blue)(Apply(2)

color(white)(LHS)=1/2[color(blue)(1-cos2x)]

color(white)(LHS)=(-cos2x+1)/2

=>LHS=RHS