How do you prove: sin(αβ)sinαsinβ+sin(βγ)sinβsinγ+sin(γα)sinγsinα=0?

1 Answer
Apr 19, 2018

To prove

sin(αβ)sinαsinβ+sin(βγ)sinβsinγ+sin(γα)sinγsinα=0

1st part

sin(αβ)sinαsinβ

=sinαcosβcosαsinβsinαsinβ

=sinαcosβsinαsinβcosαsinβsinαsinβ

=cotβcotα

Similarly

2nd part

=sin(βγ)sinβsinγ=cotγcotβ

And 3rd part

=sin(γα)sinγsinα=cotαcotγ

So whole expression

=cotβcotα+cotγcotβ+cotαcotγ=0