How do you prove: #sin(alpha-beta)/(sinalphasinbeta) + sin(beta - gamma)/(sinbetasingamma) + sin(gamma-alpha)/(singammasinalpha) = 0#?

1 Answer
Apr 19, 2018

To prove

#sin(alpha-beta)/(sinalphasinbeta) + sin(beta - gamma)/(sinbetasingamma) + sin(gamma-alpha)/(singammasinalpha) = 0#

1st part

#sin(alpha-beta)/(sinalphasinbeta) #

#=(sinalphacosbeta-cosalphasinbeta)/(sinalphasinbeta) #

#=(sinalphacosbeta)/(sinalphasinbeta)-(cosalphasinbeta)/(sinalphasinbeta) #

#=cotbeta-cotalpha#

Similarly

2nd part

# =sin(beta - gamma)/(sinbetasingamma)=cotgamma-cotbeta#

And 3rd part

#=sin(gamma-alpha)/(singammasinalpha)=cotalpha-cotgamma#

So whole expression

#=cotbeta-cotalpha+cotgamma-cotbeta+cotalpha-cotgamma=0#