How do you prove sin^2x + tan^2x/(1-tan^2x) = 1/(cos^2x - sin^2x) -cos^2xsin2x+tan2x1tan2x=1cos2xsin2xcos2x?

2 Answers
Mar 28, 2018

Please refer to the Explanation.

Explanation:

sin^2x+tan^2x/(1-tan^2x)sin2x+tan2x1tan2x,

=(1-cos^2x)+tan^2x/(1-tan^2x)=(1cos2x)+tan2x1tan2x,

=1+(tan^2x/(1-tan^2x))-cos^2x=1+(tan2x1tan2x)cos2x,

={(1-tan^2x)+tan^2x}/(1-tan^2x)-cos^2x=(1tan2x)+tan2x1tan2xcos2x,

=1/(1-tan^2x)-cos^2x=11tan2xcos2x,

={1-:(1-sin^2x/cos^2x)}-cos^2x={1÷(1sin2xcos2x)}cos2x,

={1-:(cos^2x-sin^2x)/cos^2x}-cos^2x={1÷cos2xsin2xcos2x}cos2x,

=cos^2x/(cos^2x-sin^2x)-cos^2x=cos2xcos2xsin2xcos2x.

Please check the Problem.

Mar 28, 2018

Please see below.
sin^2x +(color(red)(2)tan^2x)/(1-tan^2x) = 1/(cos^2x - sin^2x) -cos^2xsin2x+2tan2x1tan2x=1cos2xsin2xcos2x ?

Explanation:

sin^2x+(color(red)(2)tan^2x)/(1-tan^2x)=1/(cos^2x-sin^2x)-cos^2xsin2x+2tan2x1tan2x=1cos2xsin2xcos2x

LHS=sin^2x+(2tan^2x)/(1-tan^2x)LHS=sin2x+2tan2x1tan2x

=1-cos^2x+(2tan^2x)/(1-tan^2x)=1cos2x+2tan2x1tan2x

=[1+(2tan^2x)/(1-tan^2x)]-cos^2x=[1+2tan2x1tan2x]cos2x

=(1-tan^2x+2tan^2x)/(1-tan^2x)-cos^2x=1tan2x+2tan2x1tan2xcos2x

=(1+tan^2x)/(1-tan^2x)-cos^2x=1+tan2x1tan2xcos2x

=(1+sin^2x/cos^2x)/(1-sin^2x/cos^2x)-cos^2x=1+sin2xcos2x1sin2xcos2xcos2x

=(cos^2x+sin^2x)/(cos^2x-sin^2x)-cos^2x=cos2x+sin2xcos2xsin2xcos2x

=1/(cos^2x-sin^2x)-cos^2x=1cos2xsin2xcos2x

=RHS=RHS