The following identities will be necessary for this problem:
•sectheta = 1/costheta
•csctheta = 1/sintheta
•tantheta = sin theta/costheta
•cottheta = costheta/sintheta
•1 -sin^2theta = cos^2theta
Now, we have what we need to prove:
(1/costheta - sintheta/costheta)(1/sintheta + 1) = costheta/sintheta
((1 - sin theta)/costheta)((1 + sin theta)/sintheta) = costheta/sintheta
(1 - sin^2theta)/(costhetasintheta) = costheta/sintheta
cos^2theta/(costhetasintheta) = costheta/sintheta
costheta/sintheta = costheta/sintheta
Identity proved!!
Practice exercises:
Prove the following identities:
a) sintheta + cos^2theta/(1 + sin theta) = 1
b) sintheta(csctheta - sin theta) = cos^2theta
exercises taken from http://www.swrschools.org/assets/algebra_2_and_trig/chapter12.pdf
Hopefully this helps and good luck!