How do you prove arcsin(tanhx) = arctan(sinhx)?

1 Answer
Nov 11, 2017

Please see below.

Explanation:

Let arcsin(tanhx) =y

then siny=tanhx

Squaring and subtracting it from one, we get

1-sin^2y=1-tanh^2x

or cos^2y=sech^2x

or sec^2y=cosh^2x

or tan^2y+1=cosh^2x

or tan^2y=cosh^2x-1=sinh^2x

or tany=sinhx

or y=arctan(sinhx)

Hence arcsin(tanhx)=arctan(sinhx)