How do you prove sin^-1(tanh(x)) = tan^-1(sinh(x))?

1 Answer
Nov 10, 2017

The way that one proves an identity is to make substitutions to only one side until it is identical to the other side:

Explanation:

Given: sin^-1(tanh(x)) = tan^-1(sinh(x))

Use the property u = sin^-1(sin(u)) on the right side and mark as equation [1]:

sin^-1(tanh(x)) = sin^-1(sin(tan^-1(sinh(x)))" [1]"

Digress and prove that sin(tan^-1(sinh(x)) = tanh(x)

An alternate form for tan^-1(u) = i/2ln(1-iu)-i/2ln(1+iu)

Substitute sinh(x) for u:

tan^-1(sinh(x)) = i/2ln(1-isinh(x))-i/2ln(1+isinh(x))

An alternate form for sin(v) = i/2e^(-iv)-i/2e^(iv)

sin(tan^-1(sinh(x))) = i/2e^(-i(i/2ln(1-isinh(x))-i/2ln(1+isinh(x)))-i/2e^(i(i/2ln(1-isinh(x))-i/2ln(1+isinh(x))))

Distribute through -i:

sin(tan^-1(sinh(x))) = i/2e^((-i^2/2ln(1-isinh(x))+i^2/2ln(1+isinh(x))))-i/2e^(i(i/2ln(1-isinh(x))-i/2ln(1+isinh(x))))

Distribute through i:

sin(tan^-1(sinh(x))) = i/2e^((-i^2/2ln(1-isinh(x))+i^2/2ln(1+i(sinh(x))))-i/2e^((i^2/2ln(1-isinh(x))-i^2/2ln(1+isinh(x))))

use the property i^2 = -1:

sin(tan^-1(sinh(x))) = i/2e^((1/2ln(1-isinh(x))-1/2ln(1+isinh(x))))-i/2e^((-1/2ln(1-isinh(x))+1/2ln(1+isinh(x))))

Write the 1/2 in the exponent as a square root:

sin(tan^-1(sinh(x))) = i/2e^((ln(sqrt(1-isinh(x)))-ln(sqrt(1+isinh(x)))))-i/2e^((-ln(sqrt(1-isinh(x)))+ln(sqrt(1+isinh(x)))))

Factor out i/2:

sin(tan^-1(sinh(x))) = i/2{e^((ln(sqrt(1-isinh(x)))-ln(sqrt(1+isinh(x))))-e^((-ln(sqrt(1-isinh(x)))+ln(sqrt(1+isinh(x)))))}

Use the property of logarithms ln(a) - ln(b) = ln(a/b):

sin(tan^-1(sinh(x))) = i/2{e^((ln((sqrt(1-isinh(x)))/(sqrt(1+isinh(x))))))-e^((ln((sqrt(1+isinh(x)))/(sqrt(1-isinh(x))))))}

Use the property e^ln(u) = u:

sin(tan^-1(sinh(x))) = i/2{(sqrt(1-isinh(x)))/(sqrt(1+isinh(x)))-(sqrt(1+isinh(x)))/(sqrt(1-isinh(x)))}

When we make a common denominator we obtain:

sin(tan^-1(sinh(x))) = i/2{(1-isinh(x))/(sqrt(1+sinh^2(x)))-(1+isinh(x))/(sqrt(1+sinh^2(x)))}

Combine over the common denominator:

sin(tan^-1(sinh(x))) = i/2{(-2isinh(x))/(sqrt(1+sinh^2(x)))}

The leading coefficient multiplied into the numerator becomes 1:

sin(tan^-1(sinh(x))) = sinh(x)/(sqrt(1+sinh^2(x)))

Use the identity 1 + sinh^2(x) = cosh^2(x):

sin(tan^-1(sinh(x))) = sinh(x)/(sqrt(cosh^2(x)))

sin(tan^-1(sinh(x))) = sinh(x)/cosh(x)

sin(tan^-1(sinh(x))) = tanh(x)

Substitute this into equation [1]:

sin^-1(tanh(x)) = sin^-1(tanh(x)) Q.E.D.