How do you prove 1+tan^2 (x) = sec^2 (x)?

1 Answer
May 2, 2016

Using the following:

  • tan(x) = sin(x)/cos(x)
  • cos^2(x)+sin^2(x) = 1
  • sec(x) = 1/cos(x)

for cos(x)!=0, we have

1+tan^2(x) = cos^2(x)/cos^2(x) + (sin(x)/cos(x))^2

=cos^2(x)/cos^2(x)+sin^2(x)/cos^2(x)

=(cos^2(x)+sin^2(x))/cos^2(x)

=1/cos^2(x)

=(1/cos(x))^2

=sec^2(x)