How do you multiply #(x + y)^6#?

1 Answer
Sep 11, 2015

#x^6+6 x^5y +15x^4y^2+20 x^3y^3+15x^2y^4+6xy^5 + y^6#

Explanation:

There is no special way to multiply (x+y) with it self six times, but we can use binomial theorem or use Pascal's triangle to write the result.

#(x+y)^6 = x^6 +6/1x^5 y +(6*5)/(2*1) x^4y^2 +(6*5*4)/(3*2*1) x^3y^3 + (6*5*4*3)/(4*3*2*1) x^2y^4 + (6*5*4*3*2)/(5*4*3*2*1) x y^5 + (6*5*4*3*2*1)/(6*5*4*3*2*1) y^6 #

= #x^6+6x^5y +15x^4y^2+20 x^3y^3+15x^2y^4+6xy^5 + y^6#