How do you multiply #(x-1)(x-2)(x-3)#?
1 Answer
Jun 11, 2018
Explanation:
It is helpful to know that:
#(x-alpha)(x-beta)(x-gamma)#
#= x^3-(alpha+beta+gamma)x^2+(alphabeta+betagamma+gammaalpha)x-alphabetagamma#
In this identity the expressions forming the coefficients of
-
#alpha+beta+gamma# -
#alphabeta+betagamma+gammaalpha# -
#alphabetagamma#
With
#alpha+beta+gamma=1+2+3=6#
#alphabeta+betagamma+gammaalpha=(1 * 2) + (2 * 3) + (3 * 1) = 2+6+3=11#
#alphabetagamma = 1 * 2 * 3 = 6#
So:
#(x-1)(x-2)(x-3) = x^3-6x^2+11x-6#