How do you multiply e^(( pi )/ 8 i) * e^( pi/2 i ) in trigonometric form?

1 Answer
Sep 30, 2016

As e^(itheta)=costheta+isintheta

e^(pi/8i)=cos(pi/8)+isin(pi/8) and

e^(pi/2i)=cos(pi/2)+isin(pi/2)

and e^(pi/8i)*e^(pi/2i)=(cos(pi/8)+isin(pi/8))(cos(pi/2)+isin(pi/2))

= cos(pi/8)cos(pi/2)+cos(pi/8)xxisin(pi/2)+isin(pi/8)xxcos(pi/2)+isin(pi/8)xxisin(pi/2)

= cos(pi/8)cos(pi/2)+icos(pi/8)sin(pi/2)+isin(pi/8)cos(pi/2)+i^2sin(pi/8)sin(pi/2)

= cos(pi/8)cos(pi/2)+icos(pi/8)sin(pi/2)+isin(pi/8)cos(pi/2)-sin(pi/8)sin(pi/2)

= [cos(pi/8)cos(pi/2)-sin(pi/8)sin(pi/2)]+i[cos(pi/2)sin(pi/8)+sin(pi/2)cos(pi/8)]

= cos(pi/8+pi/2)+isin(pi/8+pi/2)

= e^(pi/8+pi/2)