As #e^(pi/4i)=cos(pi/4)+isin(pi/4)#
and #e^(pi/2i)=cos(pi/2)+isin(pi/2)#
#e^(pi/4i)*e^(pi/2i)#
= #(cos(pi/4)+isin(pi/4))*(cos(pi/2)+isin(pi/2))#
= #cos(pi/2)cos(pi/4)+icos(pi/2)sin(pi/4)+isin(pi/2)cos(pi/4)+i^2sin(pi/2)sin(pi/4)#
= #cos(pi/2)cos(pi/4)+i{cos(pi/2)sin(pi/4)}+sin(pi/2)cos(pi/4)-sin(pi/2)sin(pi/4)#
= #{cos(pi/2)cos(pi/4)-sin(pi/2)sin(pi/4)}+i{cos(pi/2)sin(pi/4)}+sin(pi/2)cos(pi/4)#
= #cos(pi/2+pi/4)+isin(pi/2+pi/4)#
= #cos((3pi)/4)+isin((3pi)/4)#
= #-1/sqrt2+1/sqrt2i#