How do you multiply e^(( pi )/ 4 i) * e^( 3 pi/2 i ) in trigonometric form?

1 Answer
Mar 2, 2018

The answer is =sqrt2/2(1-i)

Explanation:

Apply Euler's Identity

e^(itheta)=costheta+isintheta

i^2=-1

Therefore,

e^(pi/4i)=cos(pi/4)+isin(pi/4)=sqrt2/2+isqrt2/2=sqrt2/2(1+i)

e^(3/2pii)=cos(3/2pi)+isin(3/2pi)=0-i

So,

z=e^(pi/4i)*e^(3/2pii)=sqrt2/2(1+i)*(-i)=sqrt2/2(-i-i^2)

=sqrt2/2(1-i)

"Verification"

z=(cosphi+isinphi)=sqrt2/2(1-i)

cosphi=sqrt2/2

sinphi=-sqrt2/2

phi=-pi/4, [2pi]

z=e^(pi/4i)*e^(3/2pii)=e^((pi/4+3/2pi)i)=e^(7/4pii)=e^(-1/4pii)