We know that
#e^a* e^b=e^(a+b)#
#cos(a+b)=cosacosb-sinasinb#
#sin(a+b)=sinacosb+sinbcosa#
Therefore,
#e^(pi/12i)*e^(ipi)=e^(13/12ipi)#
According to Euler's Identity
#e^(13/12ipi)=cos(13/12pi)+isin(13/12pi)#
But,
#13/12pi=3/4pi+1/3pi#
Therefore,
#cos(13/12pi)=cos(3/4pi+1/3pi)=cos(3/4pi)cos(1/3pi)-sin(3/4pi)sin(1/3pi)#
# = (-sqrt2/2) * (1/2) -( sqrt2/2)*(sqrt3/2) #
#=-((sqrt2+sqrt6))/4#
#sin(13/12pi)=sin(3/4pi+1/3pi)=sin(3/4pi)cos(1/3pi)+cos(3/4pi)sin(1/3pi)#
# = (sqrt2/2) * (1/2) +( -sqrt2/2)*(sqrt3/2) #
#=((sqrt2-sqrt6))/4#
So,
#e^(13/12ipi)=-((sqrt2+sqrt6))/4+i((sqrt2-sqrt6))/4#