How do you multiply e^(( 9 pi )/ 4 i) * e^( pi/2 i ) e9π4ieπ2i in trigonometric form?

1 Answer
Sep 26, 2016

As e^(itheta)=costheta+isinthetaeiθ=cosθ+isinθ, we have

e^((9pi)/4i)=cos((9pi)/4)+isin((9pi)/4)e9π4i=cos(9π4)+isin(9π4) and

e^(pi/2i)=cos(pi/2)+isin(pi/2)eπ2i=cos(π2)+isin(π2)

Hence e^((9pi)/4i)*e^(pi/2i)=(cos((9pi)/4)+isin((9pi)/4))(cos(pi/2)+isin(pi/2))e9π4ieπ2i=(cos(9π4)+isin(9π4))(cos(π2)+isin(π2))

= cos((9pi)/4)(cos(pi/2)+isin(pi/2))+isin((9pi)/4))(cos(pi/2)+isin(pi/2))cos(9π4)(cos(π2)+isin(π2))+isin(9π4))(cos(π2)+isin(π2))

= cos((9pi)/4)cos(pi/2)+icos((9pi)/4)sin(pi/2))+isin((9pi)/4)cos(pi/2)+i^2sin((9pi)/4)sin(pi/2))cos(9π4)cos(π2)+icos(9π4)sin(π2))+isin(9π4)cos(π2)+i2sin(9π4)sin(π2))

= cos((9pi)/4)cos(pi/2)+icos((9pi)/4)sin(pi/2))+isin((9pi)/4)cos(pi/2)-sin((9pi)/4)sin(pi/2))cos(9π4)cos(π2)+icos(9π4)sin(π2))+isin(9π4)cos(π2)sin(9π4)sin(π2))

= (cos((9pi)/4)cos(pi/2)-sin((9pi)/4)sin(pi/2))+i(sin((9pi)/4)cos(pi/2)+cos((9pi)/4)sin(pi/2))(cos(9π4)cos(π2)sin(9π4)sin(π2))+i(sin(9π4)cos(π2)+cos(9π4)sin(π2))

= cos(((9pi)/4)+(pi/2))+isin(((9pi)/4)+(pi/2))cos((9π4)+(π2))+isin((9π4)+(π2))

= cos((11pi)/4)+isin((11pi)/4)cos(11π4)+isin(11π4)

= e^((11pi)/4)e11π4