As #e^(itheta)=costheta+isintheta#, we have
#e^((9pi)/4i)=cos((9pi)/4)+isin((9pi)/4)# and
#e^(pi/2i)=cos(pi/2)+isin(pi/2)#
Hence #e^((9pi)/4i)*e^(pi/2i)=(cos((9pi)/4)+isin((9pi)/4))(cos(pi/2)+isin(pi/2))#
= #cos((9pi)/4)(cos(pi/2)+isin(pi/2))+isin((9pi)/4))(cos(pi/2)+isin(pi/2))#
= #cos((9pi)/4)cos(pi/2)+icos((9pi)/4)sin(pi/2))+isin((9pi)/4)cos(pi/2)+i^2sin((9pi)/4)sin(pi/2))#
= #cos((9pi)/4)cos(pi/2)+icos((9pi)/4)sin(pi/2))+isin((9pi)/4)cos(pi/2)-sin((9pi)/4)sin(pi/2))#
= #(cos((9pi)/4)cos(pi/2)-sin((9pi)/4)sin(pi/2))+i(sin((9pi)/4)cos(pi/2)+cos((9pi)/4)sin(pi/2))#
= #cos(((9pi)/4)+(pi/2))+isin(((9pi)/4)+(pi/2))#
= #cos((11pi)/4)+isin((11pi)/4)#
= #e^((11pi)/4)#