Apply Euler's Identity
#e^(itheta)=costheta+isintheta#
#e^(5/8pii)=cos(5/8pi)+isin(5/8pi)#
#e^(3/2pii)=cos(3/2pi)+isin(3/2pi)#
#cos2theta=2cos^2theta-1=1-2sin^2theta#
#costheta=sqrt((1+cos2theta)/2)#
#sintheta=sqrt((1-sin2theta)/2)#
#cos(5/8pi)=sqrt((1+cos(10/8pi)/2))#
#cos(10/8pi)=cos(5/4pi)=cos(pi+1/4pi)#
#=cospicos(1/4pi)-sin(pi)sin(1/4pi)#
#=-1*sqrt2/2-0#
#=-sqrt2/2#
#cos(5/8pi)=sqrt((1-sqrt2/2)/2)=(sqrt(2-sqrt2))/(2)#
#sin(5/8pi)=sqrt((1-sin(10/8pi)/2)#
#sin(10/8pi)=sin(5/4pi)=2*-sqrt2/2=-sqrt2#
#sin(5/8pi)=sqrt((1+sqrt2/2)/2)=1/2sqrt(2+sqrt2)#
#e^(3/2pii)=cos(3/2pi)+isin(3/2pi)=0-i#
And finally,
#e^(5/8pii)*e^(3/2pii)=((sqrt(2-sqrt2))/(2)+i1/2sqrt(2+sqrt2))*(-i)#
#=1/2(sqrt(2+sqrt2))-i1/2(sqrt(2-sqrt2))#