How do you multiply e^((11pi )/ 12 ) * e^( pi/4 i ) in trigonometric form?

1 Answer
May 30, 2018

The answer is =-sqrt3/2-1/2i

Explanation:

Apply Euler's relation

e^(itheta)=costheta+isintheta

e^(11/12ipi)=cos(11/12pi)+isin(11/12pi)

e^(1/4ipi)=cos(1/4pi)+isin(1/4pi)

i^2=-1

Therefore,

e^(11/12ipi)*e^(1/4ipi)=(cos(11/12pi)+isin(11/12pi))*(cos(1/4pi)+isin(1/4pi))

=cos(11/12pi)cos(1/4pi)-sin(11/12pi)sin(1/4pi)+i(cos(11/12pi)sin(1/4pi)+sin(11/12pi)cos(1/4pi)))

=cos(11/12pi+1/4pi)+isin(11/12pi+1/4pi)

=cos(14/12pi)+isin(14/12pi)

=cos(7/6pi)+isin(7/6pi)

=-sqrt3/2-1/2i