How do you multiply # (9-4i)(2-i) # in trigonometric form?

1 Answer
Apr 25, 2018

#color(red)(z=22.0*[cos(-50.5^@)+i*sin(-50.5^@)]#

Explanation:

#" "#
Multiply the two complex numbers #(9-4i)*(2-i)# using #FOIL# Method.

#(9-4i)*(2-i)#

#rArr18-9i-8i+4i^2#

#rArr 18-17i+4*(-1)#

Note: #i^2=(-1)#

#rArr 18-17i-4#

#rArr14-17i#

Hence, #color(red)((9-4i)*(2-i)=14-17i# Intermediate Result 1

Convert this intermediate result to Trigonometric Form.

For a complex number in standard form: #color(blue)(z=a+bi#,

#r=sqrt(a^2+b^2#

#theta =tan^(-1)(b/a)#

#cos (theta) = a/r#

#rArr a=r*cos(theta)#

#sin(theta)=b/r#

#rArr b=r*sin(theta)#

#:. z=r*[cos(theta)+i*sin(theta)]#

Using Intermediate Result 1,

#r=sqrt(a^2+b^2#

#rArr sqrt(14^2+(-17)^2#

#rArr sqrt(196+289#

#rArr sqrt(485#

#:. r ~~ 22.02272#

#theta = tan^(-1)(b/a)#

#rArr tan^(-1)((-17)/14)#

#theta=tan^(-1)(-1.21429)#

#theta ~~-50.52763939^@#

#theta ~~ -50.5^@#

Hence,

#color(red)(z=22.0*[cos(-50.5^@)+i*sin(-50.5^@)]#

Hope it helps.