How do you multiply (9-2x^4)^2(92x4)2?

2 Answers
Apr 5, 2018

81-36x^4+4x^88136x4+4x8

Explanation:

(9-2x^4)^2(92x4)2

=(9-2x^4)(9-2x^4)(92x4)(92x4)

=81-18x^4-18x^4+4x^88118x418x4+4x8

=81-36x^4+4x^88136x4+4x8

Apr 5, 2018

(9-2x^4)^2=color(blue)(4x^8-36x^4+81(92x4)2=4x836x4+81

Explanation:

Multiply/Simplify/Expand:

(9-2x^4)^2(92x4)2

Use the square of a difference:

(a-b)^2=a^2-2ab+b^2(ab)2=a22ab+b2,

where:

a=9a=9, and b=2x^4b=2x4

Plug in the known values.

(9-2x^4)^2=9^2-(2*9*2x^4)+(2x^4)^2(92x4)2=92(292x4)+(2x4)2

Simplify 9^292 to 8181.

(9-2x^4)^2=81-(2*9*2x^4)+(2x^4)^2(92x4)2=81(292x4)+(2x4)2

Apply the multiplicative distributive property: (ab)^m=a^mb^m"(ab)m=ambm

(9-2x^4)^2=81-(2*9*2x^4)+2^2*(x^4)^2(92x4)2=81(292x4)+22(x4)2

Apply power rule: (a^m)^n=a^(m*n)(am)n=amn

(9-2x^4)^2=81-(2*9*2x^4)+2^2*x^8(92x4)2=81(292x4)+22x8

Simplify.

(9-2x^4)^2=81-36x^4+4x^8(92x4)2=8136x4+4x8

Rearrange the equation in descending order.

(9-2x^4)^2=4x^8-36x^4+81(92x4)2=4x836x4+81