How do you multiply (9-2x^4)^2?

2 Answers
Apr 5, 2018

81-36x^4+4x^8

Explanation:

(9-2x^4)^2

=(9-2x^4)(9-2x^4)

=81-18x^4-18x^4+4x^8

=81-36x^4+4x^8

Apr 5, 2018

(9-2x^4)^2=color(blue)(4x^8-36x^4+81

Explanation:

Multiply/Simplify/Expand:

(9-2x^4)^2

Use the square of a difference:

(a-b)^2=a^2-2ab+b^2,

where:

a=9, and b=2x^4

Plug in the known values.

(9-2x^4)^2=9^2-(2*9*2x^4)+(2x^4)^2

Simplify 9^2 to 81.

(9-2x^4)^2=81-(2*9*2x^4)+(2x^4)^2

Apply the multiplicative distributive property: (ab)^m=a^mb^m"

(9-2x^4)^2=81-(2*9*2x^4)+2^2*(x^4)^2

Apply power rule: (a^m)^n=a^(m*n)

(9-2x^4)^2=81-(2*9*2x^4)+2^2*x^8

Simplify.

(9-2x^4)^2=81-36x^4+4x^8

Rearrange the equation in descending order.

(9-2x^4)^2=4x^8-36x^4+81