Multiply/Simplify/Expand:
(9-2x^4)^2(9−2x4)2
Use the square of a difference:
(a-b)^2=a^2-2ab+b^2(a−b)2=a2−2ab+b2,
where:
a=9a=9, and b=2x^4b=2x4
Plug in the known values.
(9-2x^4)^2=9^2-(2*9*2x^4)+(2x^4)^2(9−2x4)2=92−(2⋅9⋅2x4)+(2x4)2
Simplify 9^292 to 8181.
(9-2x^4)^2=81-(2*9*2x^4)+(2x^4)^2(9−2x4)2=81−(2⋅9⋅2x4)+(2x4)2
Apply the multiplicative distributive property: (ab)^m=a^mb^m"(ab)m=ambm
(9-2x^4)^2=81-(2*9*2x^4)+2^2*(x^4)^2(9−2x4)2=81−(2⋅9⋅2x4)+22⋅(x4)2
Apply power rule: (a^m)^n=a^(m*n)(am)n=am⋅n
(9-2x^4)^2=81-(2*9*2x^4)+2^2*x^8(9−2x4)2=81−(2⋅9⋅2x4)+22⋅x8
Simplify.
(9-2x^4)^2=81-36x^4+4x^8(9−2x4)2=81−36x4+4x8
Rearrange the equation in descending order.
(9-2x^4)^2=4x^8-36x^4+81(9−2x4)2=4x8−36x4+81