#color(blue)("Method 1")#
#color(red)((8x^2+3)color(purple)((8x^2-3)))#
Multiply everything inside one bracket by everything inside the other.
#color(purple)(color(red)(8x^2)(8x^2-3)" "color(red)(+3)(8x^2-3))#
#64x^4-24x^2 " "+24x^2-9#
#64x^4 + 0 -9#
#64x^4-9#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Method 2")#
The following is a general equation that is worth committing to memory:
Consider the general case of: #a^2+b^2=(a+b)(a-b)#
Think of #(8x^2+3)(8x^2-3)# as of form #(a+b)(a-b)#
This gives:#" "[(8x^2)^2-3^3] = 64x^4-9 larr" a 1 line solution"#
'..................................................................................
#color(brown)("If this is still not clear then let "u=8x^2" giving:")#
#(u+3)(u-3)=(u^2-3^2)#
But #u=8x^2# giving
#[(8x^2)^2-3^2]#
#=64x^4-9#