How do you multiply (5x^3-x^2+x-4) (x+1)?

1 Answer
Jul 4, 2015

Use distributivity to find:

(5x^3-x^2+x-4)(x+1) = 5x^4+4x^3-3x-4

Explanation:

(5x^3-x^2+x-4)(x+1)

=(5x^3-x^2+x-4)*x + (5x^3-x^2+x-4)*1

=5x^4-x^3+x^2-4x+5x^3-x^2+x-4

=5x^4-x^3+5x^3+x^2-x^2-4x+x-4

=5x^4+(-1+5)x^3+(1-1)x^2+(1-4)x-4

=5x^4+4x^3-3x-4

Alternatively, look at each power of x in descending order and total up the relevant products of the coefficients:

x^4 : 5*1 = 5

x^3 : (5*1) + (-1*1) = 4

x^2 : (-1*1) + (1*1) = 0

x : (1*1) + (-4*1) = -3

1: -4*1 = -4

Hence: 5x^4+4x^3-3x-4