How do you multiply (5+3i)(3+2i) in trigonometric form?

1 Answer

(5+3i)(3+2i)21.02(cos(64.65)+isin(64.65))

Explanation:

a+bi in trig form is r(cosθ+isinθ), where:

  • r=a2+b2
  • θ=arctan(ba)

(5+3i)(3+2i)(r1(cosθ1+isinθ1))(r2(cosθ2+isinθ2))
=r1r2(cos(θ1+θ2)+isin(θ1+θ2))
=52+3232+22(cos(arctan(35)+arctan(23))+isin(arctan(35)+arctan(23)))
3413(cos(64.65)+isin(64.65))
=442(cos(64.65)+isin(64.65))
21.02(cos(64.65)+isin(64.65))

Given tanθ1=35 and tanθ1=23

tanθ=35+23135×23=191535=199

and in exact form we can write product as

442(cos(arctan(199))+isin((arctan(199)))