How do you multiply (4sqrt5 + 3sqrt5)(2sqrt5 - 4sqrt2)(45+35)(2542)?

1 Answer
Oct 8, 2015

The same way you would multiply non-radicals. Break it down into simpler steps.

The front numbers multiply, then the outer, then the inner, then the last numbers. You might have learned this as "FOIL".

= (4sqrt5 * 2sqrt5) + (4sqrt5 * -4sqrt2) + (3sqrt5 * 2sqrt5) + (3sqrt5 * -4sqrt2)=(4525)+(4542)+(3525)+(3542)

= (8sqrt5*sqrt5) + (-16sqrt5 * sqrt2) + (6sqrt5 * sqrt5) + (-12sqrt5 * sqrt2)=(855)+(1652)+(655)+(1252)

= 8sqrt5*sqrt5 - 16sqrt5 * sqrt2 + 6sqrt5 * sqrt5 - 12sqrt5 * sqrt2=8551652+6551252

= 40 - 16sqrt10 + 30 - 12sqrt10=401610+301210

= color(blue)(70 - 28sqrt10)=702810

Alternatively you could write this as:

= 7(sqrt10sqrt10 - 4sqrt10)=7(1010410)

= 7(2sqrt5color(green)(sqrt5) - 4sqrt2color(green)(sqrt5))=7(255425)

= color(blue)(7sqrt5(2sqrt5 - 4sqrt2))=75(2542)