How do you multiply # (3+3i)(6-6i) # in trigonometric form?
1 Answer
Feb 28, 2016
Explanation:
#3 + 3i = 3sqrt2 e^{i(pi/4)}#
#6 - 6i = 6sqrt2 e^{i(-pi/4)}#
So,
#(3 + 3i) * (6 - 6i) = (3sqrt2 e^{i(pi/4)}) * (6sqrt2 e^{i(-pi/4)})#
#= (3sqrt2)(6sqrt2) * e^{i[(pi/4)+(-pi/4)]}#
#= 36 * e^{i(0)}#
#= 36#