How do you multiply #(2x-5)(x^2+6x-4)#?

1 Answer
Mar 19, 2017

See the entire solution process below:

Explanation:

To multiply these two terms you multiply each individual term in the left parenthesis by each individual term in the right parenthesis.

#(color(red)(2x) - color(red)(5))(color(blue)(x^2) + color(blue)(6x) - color(blue)(4))# becomes:

#(color(red)(2x) xx color(blue)(x^2)) + (color(red)(2x) xx color(blue)(6x)) - (color(red)(2x) xx color(blue)(4)) - (color(red)(5) xx color(blue)(x^2)) - (color(red)(5) xx color(blue)(6x)) + (color(red)(5) xx color(blue)(4))#

#2x^3 + 12x^2 - 8x - 5x^2 - 30x + 20#

We can now group and combine like terms:

#2x^3 + 12x^2 - 5x^2 - 8x - 30x + 20#

#2x^3 + (12 - 5)x^2 + (-8 - 30)x + 20#

#2x^3 + 7x^2 - 38x + 20#