How do you multiply: 2(cos(pi/3)+ i sin(pi/3)) and 4(cos(pi/4)+ i sin(pi/4))?

1 Answer
Jun 24, 2016

Product is 8e^(i(7pi)/12)=8(cos((7pi)/12)+isin((7pi)/12))

= (2sqrt2-2sqrt6)+i(2sqrt6+2sqrt2)

Explanation:

To multiply the two complex numbers in polar form there could be three ways.

A - (2(cos(pi/3)+ i sin(pi/3)))xx(4(cos(pi/4)+ i sin(pi/4)))

= 8(1/2+ i sqrt3/2)(1/sqrt2+ i1/sqrt2)

= 8(1/(2sqrt2)+isqrt3/(2sqrt2)+i1/(2sqrt2)-sqrt3/(2sqrt2))

= (2sqrt2-2sqrt6)+i(2sqrt6+2sqrt2)

B - As (2(cos(pi/3)+ i sin(pi/3)))=2e^(i(pi/3))and

4(cos(pi/4)+ i sin(pi/4))=4e^(i(pi/4)), their product is

4xx2xxe^(i(pi/3+pi/4))=8e^(i(7pi)/12)

C - (2(cos(pi/3)+ i sin(pi/3)))xx(4(cos(pi/4)+ i sin(pi/4)))

= 8[(cos(pi/3)cos(pi/4)-sin(pi/3)sin(pi/4))+i(sin(pi/3)cos(pi/4)+cos(pi/3)sin(pi/4))]

= 8cos((pi/3)+(pi/4))+isin((pi/3)+(pi/4))

= 8(cos((7pi)/12)+isin((7pi)/12))