How do you multiply #12a(a + b)(a + -1b)#?

1 Answer
Dec 12, 2017

#-1b=-b#
You get
#12a(a+b)(a-b)#
The identity literally is:
#(a+b)(a-b)=a^2-b^2#
You get
#12a(a^2-b^2)#
You should know that:
#12a(a^2-b^2)!=12axxa^2-b^2#
Distribute it,
#a(x+- xx div y)=axx x +-xx div axxy#
The #+-xxdiv# means it could be anything in between
By using distributive property
#12axxa^2-12axxb^2#
Remember,
#a^mxxa^n=a^(m+n)#
#12(a^(1+2)) - 12ab^2#
You get
#12a^3-12ab^2#