How do you multiply (10 +sqrt20) - (4 - sqrt45)?

1 Answer
May 5, 2018

" "
color(red)((10 +sqrt20) - (4 - sqrt45)=6+5 sqrt(5)

Explanation:

" "
**Given the radical expression: ** color(blue)((10 +sqrt20) - (4 - sqrt45)

Remove the brackets:

rArr 10 +sqrt(20) - 4 + sqrt45)

Rewrite radicals as:

rArr 10+sqrt(4*5)-4+sqrt(9.5

Use the formula: color(blue)(sqrt(a*b)=sqrt(a)*sqrt(b)

rArr 10+sqrt(4)*sqrt(5)-4+sqrt(9)*sqrt(5

Simplify after combining the like terms:

rArr 10-4+sqrt(4)*sqrt(5)+sqrt(9)*sqrt(5

rArr 6+sqrt(2^2)*sqrt(5)+sqrt(3^2)*sqrt(5

Use the formula: color(blue)(sqrt(a^2)=sqrt(a*a)=a

rArr 6+2sqrt(5)+3sqrt(5)

Use the formula: color(blue)(a sqrt(n)+b sqrt(n)=(a+b)sqrt(n)

rArr 6+(2+3) sqrt(5)

rArr 6+5 sqrt(5)

Hence,

color(blue)((10 +sqrt20) - (4 - sqrt45)=6+5 sqrt(5)

is the final answer.