How do you multiply (1+3i)(1-3i) in trigonometric form?
1 Answer
Mar 27, 2016
(1 + 3i)(1 - 3i) = 10
Explanation:
abs(1+3i) = abs(1-3i) = sqrt(1^2+3^2) = sqrt(10)
1 + 3i = sqrt(10) cis (arctan(3))
1 - 3i = sqrt(10) cis (arctan(-3)) = sqrt(10) cis (-arctan(3))
So:
(1 + 3i)(1 - 3i)
= (sqrt(10) cis (arctan(3)))(sqrt(10) cis (-arctan(3)))
= (sqrt(10))^2 cis (arctan(3) - arctan(3))
= 10 cis(0)
= 10