# How do you integrate #int xtan(x^2)sec(x^2)# using substitution?

##### 1 Answer

Oct 21, 2016

#### Explanation:

#I=intxtan(x^2)sec(x^2)dx#

The first substitution we will make is

#I=1/2int2xtan(x^2)sec(x^2)dx#

#I=1/2inttan(x^2)sec(x^2)(2xdx)#

Substituting in our values for

#I=1/2inttan(u)sec(u)du#

This is the integral for

#I=1/2sec(u)+C#

Since

#I=1/2sec(x^2)+C#