How do you integrate #int sqrt(7x^2-3)^(3/2)# using trig substitutions?

1 Answer
Dec 4, 2017

#int (7x^2-3)^(3/2)*dx#

=#7/4x^3*sqrt(7x^2-3)-15/8xsqrt(7x^2-3)+(27sqrt7)/56*ln(xsqrt7+sqrt(7x^2-3))+C#

Explanation:

#int (7x^2-3)^(3/2)*dx#

After using #x=sqrt(3/7)*secu# and #dx=sqrt(3/7)*secu*tanu*du# transforms, this integral became,

#int [7*3/7(secu)^2-3]^(3/2)*sqrt(3/7)*secu*tanu*du#

=#int [3(secu)^2-3]^(3/2)*sqrt(3/7)*secu*tanu*du#

=#int [3(tanu)^2]^(3/2)*sqrt(3/7)*secu*tanu*du#

=#int [3sqrt3(tanu)^3*sqrt(3/7)*secu*tanu*du#

=#int [9/sqrt7*(tanu)^4*secu*du#

Now, I solved #int (tanu)^4*secu*du# integral,

#int (tanu)^4*secu*du#

=#int [(secu)^2-1]^2*secu*du#

=#int (secu)^5*du-2int (secu)^3*du+int secu*du#

After using reduction formula for #int (secu)^n*du#,

#int (secu)^n*du=1/(n-1)*(secu)^(n-2)*tanu+(n-2)/(n-1)*int (secu)^(n-2)*du#

#int (tanu)^4*secu*du#

=#1/4*(secu)^3*tanu+3/4int (secu)^3*du-2int (secu)^3*du+int secu*du#

=#1/4*(secu)^3*tanu-5/4int (secu)^3*du+int secu*du#

=#1/4*(secu)^3*tanu-5/8*secu*tanu-5/8int secu*du+int secu*du#

=#1/4*(secu)^3*tanu-5/8*secu*tanu+3/8int secu*du#

=#1/4*(secu)^3*tanu-5/8*secu*tanu+3/8ln(secu+tanu)+sqrt7/9*C1#

Hence,

=#int 9/sqrt7*(tanu)^4*secu*du#

=#9/(4sqrt7)*(secu)^3*tanu#-#45/(8sqrt7)*secu*tanu#+#27/(8sqrt7)*ln(secu+tanu)+C1#

After using #x=sqrt(3/7)*secu#, #secu=sqrt(7/3)*x# and #tanu=sqrt(7x^2-3)/sqrt3# inverse transformations, I found

#int (7x^2-3)^(3/2)*dx#

=#9/(4sqrt7)*7sqrt7/9*x^3*sqrt(7x^2-3)#-#45/(8sqrt7)*sqrt7/3*xsqrt(7x^2-3#+#27/(8sqrt7)*ln(sqrt(7/3)*x+sqrt(7x^2-3)/sqrt3)+C1#

=#7/4x^3*sqrt(7x^2-3)#-#15/8xsqrt(7x^2-3#+#(27sqrt7)/56*ln(xsqrt7+sqrt(7x^2-3))+C#

Note: #C=C1-(27sqrt7)/112*Ln3#