How do you integrate #int sqrt(1-x^2)# by trigonometric substitution?

1 Answer
Jan 12, 2017

#int sqrt(1-x^2)dx = 1/2(arcsinx + xsqrt(1-x^2)) + C#

Explanation:

As the integrand function is defined for #x in [-1,1]#, you can substitute:

#x= sint # with #t in [-pi/2,pi/2]#

#dx = costdt#

so the integral becomes:

#int sqrt(1-x^2)dx = int sqrt(1-sin^2t)costdt = int sqrt(cos^2t) cost dt#

In the given interval #cost# is positive, so #sqrt(cos^2t) = cost#:

#int sqrt(1-x^2)dx = int cos^2t dt#

Now we can use the identity:

#cos^2t = (1+cos(2t))/2#

#int sqrt(1-x^2)dx = int (1+cos(2t))/2 dt = int (dt)/2 + 1/4 int cos(2t)d(2t)= 1/2t+1/4sin2t = 1/2(t+sintcost)#

To substitute back #x# we note that:

#x = sint# for #t in [-pi/2,pi/2] => t = arcsinx#

#cost = sqrt(1-sin^2t) = sqrt(1-x^2)#

Finally:

#int sqrt(1-x^2)dx = 1/2(arcsinx + xsqrt(1-x^2)) + C#