How do you integrate #int sqrt(1-4x-2x^2)# using trig substitutions? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Cesareo R. Aug 20, 2016 #int (sqrt(1-4x-2x^2))dx = 3 sqrt(2)/8(2 arcsin(sqrt(2/3) (1 + x)) + sin(2 arcsin(sqrt(2/3) (1 + x))))+C# Explanation: #int (sqrt(1-4x-2x^2))dx=sqrt(3)int(sqrt(1-2/3(x+1)^2))dx# now calling #sqrt(2/3)(x+1) = sin y# #sqrt(2/3) dx = cos y dy# and #int (sqrt(1-4x-2x^2))dx equiv sqrt(3) sqrt(3/2) int cos^2y dy = 3/sqrt(2)(y/2+1/4 sin(2y)) + C# and after substituting #y = arcsin(sqrt(2/3)(x+1))# #int (sqrt(1-4x-2x^2))dx = 3 sqrt(2)/8(2 arcsin(sqrt(2/3) (1 + x)) + sin(2 arcsin(sqrt(2/3) (1 + x))))+C# Answer link Related questions How do you find the integral #int1/(x^2*sqrt(x^2-9))dx# ? How do you find the integral #intx^3/(sqrt(x^2+9))dx# ? How do you find the integral #intx^3*sqrt(9-x^2)dx# ? How do you find the integral #intx^3/(sqrt(16-x^2))dx# ? How do you find the integral #intsqrt(x^2-1)/xdx# ? How do you find the integral #intsqrt(x^2-9)/x^3dx# ? How do you find the integral #intx/(sqrt(x^2+x+1))dx# ? How do you find the integral #intdt/(sqrt(t^2-6t+13))# ? How do you find the integral #intx*sqrt(1-x^4)dx# ? How do you prove the integral formula #intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C# ? See all questions in Integration by Trigonometric Substitution Impact of this question 1738 views around the world You can reuse this answer Creative Commons License