How do you integrate #int 1/(xsqrt(4x^2-1) )dx# using trigonometric substitution? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Harish Chandra Rajpoot Jul 23, 2018 #\color{red}{\int \frac{1}{x\sqrt{4x^2-1}}\ dx}=\color{blue}{\sec^{-1}(2x)+C# Explanation: Given integral #\int \frac{1}{x\sqrt{4x^2-1}}\ dx# #=2\int \frac{1}{2x\sqrt{(2x)^2-1}}\ dx# Let #2x=\sec t\implies 2dx=\sec t\tan t\ dt\ \ \or \ \ dx=\sect \tan t\ dt/2# #=2\int \frac{1}{\sec t\sqrt{sec^2t-1}}\ sec t\tan t\ dt/2# #=\int \frac{\sec t\tan t}{\sec t\tan t}dt# #=\int dt# #=t+C# #=\sec^{-1}(2x)+C# Answer link Related questions How do you find the integral #int1/(x^2*sqrt(x^2-9))dx# ? How do you find the integral #intx^3/(sqrt(x^2+9))dx# ? How do you find the integral #intx^3*sqrt(9-x^2)dx# ? How do you find the integral #intx^3/(sqrt(16-x^2))dx# ? How do you find the integral #intsqrt(x^2-1)/xdx# ? How do you find the integral #intsqrt(x^2-9)/x^3dx# ? How do you find the integral #intx/(sqrt(x^2+x+1))dx# ? How do you find the integral #intdt/(sqrt(t^2-6t+13))# ? How do you find the integral #intx*sqrt(1-x^4)dx# ? How do you prove the integral formula #intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C# ? See all questions in Integration by Trigonometric Substitution Impact of this question 2536 views around the world You can reuse this answer Creative Commons License