How do you integrate int 1/sqrt(e^(2x)+12e^x-13)dx1e2x+12ex13dx using trigonometric substitution?

1 Answer
May 11, 2018

I=2/sqrt13tan^-1(sqrt13xxsqrt((e^x-1)/(e^x+13)))+cI=213tan1(13×ex1ex+13)+c

Explanation:

Here,

I=int1/sqrt(e^(2x)+12e^x-13)dxI=1e2x+12ex13dx

=int1/sqrt(e^(2x)+12e^x+36-49)dx=1e2x+12ex+3649dx

=int1/sqrt((e^x+6)^2-7^2)dx=1(ex+6)272dx

Let,

color(blue)(e^x+6=7secu=>e^x=7secu-6=>e^xdx=7secutanuduex+6=7secuex=7secu6exdx=7secutanudu

color(blue)(=>dx=(7secutanudu)/(7secu-6)&,secu= (e^x+6)/7=>color(red)(cosu=7/(e^x+6)dx=7secutanudu7secu6&,secu=ex+67cosu=7ex+6

:.I=int1/sqrt(7^2sec^2u-7^2)xx(7secutanu)/(7secu-6)du

=int1/(7tanu)xx(7secutanu)/(7secu-6)du

=intsecu/(7secu-6)du

=int1/(7-6cosu)du

Now,subst. color(violet)(tan(u/2)=t=>sec^2(u/2)*1/2du=dt

color(violet)(=>du=(2dt)/(1+tan^2(u/2))=(2dt)/(1+t^2) and cosx=(1- t^2)/(1+t^2)

:.I=int1/(7-6((1-t^2)/(1+t^2)))xx2/(1+t^2)dt=2intdt/(7+7t^2- 6+6t^2)

=2int1/(13t^2+1)dt=2/13int1/(t^2+(1/13))dt

=2/13int1/(t^2+(1/sqrt13)^2)dt

=2/13xx1/(1/sqrt13)tan^-1(t/(1/sqrt13))+c

=2/sqrt13tan^-1(sqrt13t)+c, where,color(violet)(t=tan(u/2)

:.I=2/sqrt13tan^-1(sqrt13 tan(u/2))+c...to(A)

We know that, tan^2(u/2)=(1-cosu)/(1+cosu),where, color(red)(cosu=7/(e^x+6)

=>tan^2(u/2)=(1-(7/(e^x+6)))/(1+(7/(e^x+6)))=(e^x+6- 7)/(e^x+6+7)=(e^x-1)/(e^x+13)

=>tan(u/2)=sqrt((e^x-1)/(e^x+13))

Hence, from (A), we have

I=2/sqrt13tan^-1(sqrt13xxsqrt((e^x-1)/(e^x+13)))+c