How do you integrate #int 1/sqrt(9x^2-6x) # using trigonometric substitution? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Heikichi E. Mar 27, 2018 #1/3 ln|(3x-1) + sqrt(9x^2-6x)| + C# Explanation: #int dx/sqrt(9x^2-6x)# #=# #int dx/sqrt((3x-1)^2-1)# Let : #3x - 1 = sec(t) -> dx = 1/3(sec(t) tan(t))dt# Subtitute : #int dx/sqrt((3x-1)^2-1)# = #1/3int (sec(t)tan(t) dt)/sqrt(sec^2(t)-1)# = #1/3int (sec(t)tan(t) dt)/(tan(t))# = #1/3int sec(t)dt# = #1/3ln|sec(t) + tan(t)| + C# #= 1/3 ln|(3x-1) + sqrt(9x^2-6x)| + C# Answer link Related questions How do you find the integral #int1/(x^2*sqrt(x^2-9))dx# ? How do you find the integral #intx^3/(sqrt(x^2+9))dx# ? How do you find the integral #intx^3*sqrt(9-x^2)dx# ? How do you find the integral #intx^3/(sqrt(16-x^2))dx# ? How do you find the integral #intsqrt(x^2-1)/xdx# ? How do you find the integral #intsqrt(x^2-9)/x^3dx# ? How do you find the integral #intx/(sqrt(x^2+x+1))dx# ? How do you find the integral #intdt/(sqrt(t^2-6t+13))# ? How do you find the integral #intx*sqrt(1-x^4)dx# ? How do you prove the integral formula #intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C# ? See all questions in Integration by Trigonometric Substitution Impact of this question 1406 views around the world You can reuse this answer Creative Commons License