How do you integrate #int 1/sqrt(16-x^2)# by trigonometric substitution? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Anjali G Nov 21, 2016 #=sin^(-1)(1/4x)+C# Explanation: #int1/(sqrt(16-x^2))dx# #int1/(sqrt(16(1-x^2/16)))dx# #int1/(4sqrt(1-(x/4)^2))dx# #1/4int1/(sqrt(1-(x/4)^2))dx# Let #u = 1/4x# #(du)/(dx)=1/4# #4du=dx# #1/4int1/sqrt(1-u^2)4du# #int1/sqrt(1-u^2)du# #=sin^(-1)u+C# Substitute #u# back in: #=sin^(-1)(1/4x)+C# Answer link Related questions How do you find the integral #int1/(x^2*sqrt(x^2-9))dx# ? How do you find the integral #intx^3/(sqrt(x^2+9))dx# ? How do you find the integral #intx^3*sqrt(9-x^2)dx# ? How do you find the integral #intx^3/(sqrt(16-x^2))dx# ? How do you find the integral #intsqrt(x^2-1)/xdx# ? How do you find the integral #intsqrt(x^2-9)/x^3dx# ? How do you find the integral #intx/(sqrt(x^2+x+1))dx# ? How do you find the integral #intdt/(sqrt(t^2-6t+13))# ? How do you find the integral #intx*sqrt(1-x^4)dx# ? How do you prove the integral formula #intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C# ? See all questions in Integration by Trigonometric Substitution Impact of this question 17017 views around the world You can reuse this answer Creative Commons License